AFRL-IF-RS-TR-2000-159
Final Technical Report
November

%
g

QUANTIFYING MINIMUM-TIME-TO-INTRUSION
BASED ON DYNAMIC SOFTWARE SAFETY
ASSESSMENT

Reliable Software Technologies

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. A0 D331

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

ey 20010220 049

\/

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical

Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-159 has been reviewed and is approved for publication.

APPROVED: @L C. ﬁ%mf/

JOHN C. FAUST
Project Engineer

FOR THE DIRECTOR: /////L/“Z//

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

QUANTIFYING MINIMUM-TIME-TO-INTRUSION BASED
ON DYNAMIC SOFTWARE SAFETY ASSESSMENT

Jeffery M. Voas, Gary McGraw,
Anup Ghosh, Frank Charron,
Michael Schatz, and Tom O’Conner

Contractor: Reliable Software Technologies
Contract Number: F30602-95--0282
Effective Date of Contract: 28 September 1995
Contract Expiration Date: 27 September 1998

Short Title of Work: Quantifying Minimum-Time-
To-Intrusion Based on Dynamic
Software Safety Assessment

Period of Work Covered: Sep 95 - Sep 98

Principal Investigator: Jeffrey M. Voas
Phone: (703) 404-9293

AFRL Project Engineer: John C. Faust
Phone: (315) 330-4544

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by John C. Faust, AFRL/IFGB, 525 Brooks Road, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB o, 0704.0188

Public reporting burden for this collection of information is estimated o average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this colfection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Dffice of Management and Budget, Paperwark Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1998 Final 28 Sep 95 - 27 Sep 98
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
QUANTIFYING MINIMUM-TIME-TO-INTRUSION BASED ON DYNAMIC |C - F30602-95-C-0282
SOFTWARE SAFETY ASSESSMENT PE- 62301E
PR- C929
6. AUTHOR(S) TA- 02
WU- 01

Jeffrey M. Voas, Gary McGraw, Anup Ghosh, Frank Charron, Michael Schatz, Tom

O'Connor & Brian Sohr
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Reliable Software Technologies
21351 Ridgetop Circle, Suite 400 N/A
Dulles, VA 20166

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Defense Advanced Research Projects Agency Air Force Research Laboratory/IFGB
3701 North Fairfax Drive 525 Brooks Road AFRL-JF-RS-TR-2000-159
Arlington VA 22203-1714 Rome NY 13440-4505

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: John C. Faust/IFGB/(315) 330-4544

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT /Maximum 200 words/

This report presents an overview of the results of a three year DARPA-sponsored effort investigating dynamic software
security analysis. This research effort resulted in the design and implementation of two major tool sets (FIST and VISTA),
each comprised of many individual tools, and the development of a methodology that provides the capability to perform a
thorough security analysis on a piece of security-critical software written in C or C++. The Fault Injection Security Tool
(FIST) automates white-box dynamic security analysis of software using program inputs, fault injection and assertion
monitoring of programs written in C and C++. The VIsualizing STatic Analysis (VISTA) Tool provides a way of viewing
and navigating static analysis properties of a program. Together these tools provide static and dynamic analysis capabilities
that can identify security vulnerabilities in source code before its release. However, a major research issue remains. Though
the current approach is able to discover security vulnerabilities through a process of fault injection and dynamic monitoring,
the tools themself are not able to determine whether such an event could occur through standard attacker input at the
program interface. This effort only scratched the surface of work on this important problem.

14, SUBJECT TERMS 15. NUMBER OF PAGES
44

Software Security Analysis, Software Fault Injection, Information Warfare, Static Data Flow [16. PRICE CODE
Analysis, Program Data Flow Visualization

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED ___UNCLASSIFIED UL

Standard Form 798 TRev. 2-89) (EG)
Prescribed by ANS| Std. 238,18
Designed using Perform Pro, WHSIDIOR, Oct 84

Table of Contents

1 Introduction
1.1 Organization

2 Defining the Problem
2.1 Prior Art
2.2 Related work at Reliable Software Technologies

3 Fault Injection Terminology
3.1 AnlIntroduction to Stack Smashing
3.2 Implementing AVA with FIST
3.3 Formalizing AVA
3.4 Assessing Program Behavior
3.5 A Relative Security Metric

4 Fault Injection Security Tool (FIST)
4.1 Using FIST

5 Experimental Analysis with FIST
5.1 Samba
52 pop3d
6 Are FIST Vulnerabilities Real?
7 VIsualizing STatic Analysis (VISTA)
7.1 Static Data Flow
7.2 VISTA views
8 Integrating FIST and VISTA
8.1 Using VISTA before FIST
8.2 Using VISTA after FIST
9 Pathfinder
9.1 Identifying Paths
9.2 Experimentation
10 Conclusion

References

11 Appendix A: Document repository index

(- JEN BEN I W= W LW

O O

12
14
14

15
16
16
16
17
18
19
20
21
21
22
23

24

Figure 1
Figure 2
Figure 3

Figure 4
Figure 5

Table 1:

List of Figures

Overview of FIST

FIST’s four steps represented as icons 10
FIST Source Code Browser with Perturbation Function Edit

Window open 11
FIST Results Browser with Violation Encountered Window Open 13
VISTA Main Frame and Caller/Callee Frame 17

List of Tables

Results from FIST analysis of network daemons 14

1 Introduction

This report presents an overview of the results of Reliable Software Technologies’ three-year DARPA-
sponsored effort investigating dynamic software security analysis. The research effort resulted in
the design and implementation of two major tool sets (FIST and VISTA), each comprised of many
individual tools. Both tool sets will be explained in this document. A methodology was developed
so that a security analyst can use the tools to perform a thorough security analysis on a piece of
security-critical software written in C or C++. Together, the tools and methodology developed
during the project present a novel approach to design for security. The core concept developed
throughout the project is to begin security analysis as early as possible in an application’s lifecycle
in order to uncover and mitigate security problems before the application is fielded.

The current system provides a powerful analysis capability closely related to a proven approach
to software safety analysis [23]. Given a security-critical software system, FIST and VISTA can
help an analyst determine important security criteria. It is important to note, however, that fault
injection for safety analysis has proven to be more fruitful than fault injection for security. The main
difference between the two lies in the fact that security involves an intelligent malicious adversary
while safety does not. Another important factor is the common application of fault tree analysis
in software safety (which can help determine which perturbations to use) and the lack of a similar
corresponding framework for security.

The major goal of this work, to create a complete system for helping developers and analysts
perform security analysis on source code, was partially met by the project. Many of the more tedious
aspects of source-code-based security analysis have been captured by our current set of automated
tools. However a major research issue remains. Our current approach is able to discover security
vulnerabilities through a process of fault injection and dynamic monitoring, but the system itself
is not able to determine whether such an event could occur through standard attacker input at
program interfaces.

After developing our tools and experimenting with them extensively, we developed a final set of
experiments aimed at generating interface inputs to exploit a simulated vulnerability. Discovering
a set of such inputs would be tantamount to creating an exploit script. It would also demonstrate
in a very clear manner the need for mitigating measures inside the code. We only scratched the
surface of work on this important problem. We hope to continue this research through additional
initiatives.

1.1 Organization

This report is organized around a presentation of the two major toolsets developed during the
project (FIST and VISTA). We will begin with a definition of the problem, a brief presentation
of related work, and a definition of some terms that have helped us clarify our thinking about the
problem. Next we will present the Adaptive Vulnerability Analysis (AVA) algorithm, the theoretical
engine of FIST. The Fault Injection Security Tool (FIST) itself will be explained at a high level and
some results of FIST experimentation will be reviewed. After a discussion of results gleaned from
FIST alone, we turn to a discussion of the VIsualizing STatic Analysis (VISTA) toolset. Based on
extensive use of FIST in a number of analyses, VISTA was designed and implemented to make the
methodology more efficient and easier for an analyst to use. VISTA is applicable both before and
after FIST, and it increases the power of the toolset as a whole. Finally, we present the results of

a preliminary experiment addressing the “back to the inputs” problem. A solution to this problemn
would have drastic paradigm-enabling implications for fault injection, regardless of the domain.

2 Defining the Problem

The original computer security defense strategy, circa 1970, was appropriately termed “penetrate
and patch.” At that time, defense was entirely reactive — something that happened only after an
attack was detected and some damage had already been inflicted. Penetrate and patch was followed
by a series of more advanced defensive techniques (e.g., real-time intrusion detection and auditing
tools). Unfortunately, a recent proliferation of sophisticated threats has caused defensive security
schemes to come full circle, back to where they began twenty-some years ago. Penetrate and patch
has once again become the status quo.

The problems in information security are more difficult to understand than those of other
certification/assurance disciplines such as software safety or failure tolerance. The fact that a
security threat is malicious adds subtleties and challenges that are different from those usually
encountered in software quality assurance. For example, it is rather obvious that an “unsafe”
event has occurred after an aviation disaster; but security intrusions are far less observable, and
are often virtually undetectable. In a keynote address at the Eleventh Annual Computer Security
Applications Conference (ACSAC’95) held in New Orleans, LA [24], Paul Strassmann stated that
only between 1 in 400 and 1 in 1,000 attacks are detected. Because security violations are so hard
to detect, there is a shortage of good data about them.

The detection of malicious threats is one complication. The nature of those threats is another.
Unlike real military intrusions, software intrusions are “virtual.” Counterintuitive though it may
seem, an unsuccessful software offensive almost always strengthens the attacker (by way of gained
knowledge), and does not strengthen the site attacked (by way of weakening the attacker). In
traditional military intrusions, an unsuccessful offensive usually weakens the attacker at least as
much as the site attacked. Furthermore, in traditional war strategies, the potential for retaliation
provides an important deterrent to attack. On the information battlefield, however, the fear of
retaliation is minimal at most, and does not affect the balance of power. Most information security
techniques used today are either based on the outdated tactics of twenty years ago, or are based
on tactics that apply only to conventional warfare, not to information warfare. As a result of these
shortcomings, we are left weakened and ill-prepared for defense.

This report details our adaption of a software failure tolerance metric to security measurement.
The aim of this work is to provide the theory that underlies a security assessment methodology
which we call Adaptive Vulnerability Analysis (AVA) and to present a prototype for a vulnerability
assessment prototype tool. AVA provides a relative measure of software security. Though AVA
may fail to account for especially clever intruders who create new malicious threats from scratch, it
is certainly capable of simulating many important previous security threats and (with some luck)
can also be used to detect some unknown vulnerabilities. Our approach allows information system
vendors to know a priori whether their systems are secure against a predefined set of threats,
T = {t,%2,....tn}, where T includes recurrent threats that are commonly encountered. T is open-
ended in the sense that when novel intrusion schemes do surface and are debugged, T can be
augmented so that they are included during security assessment. Since the evaluated metrics will
vary with different sets T', we label the method “adaptive”. We attempt to simulate novel threats
as well as known threats during the application of AVA.

2.1 Prior Art

A number of techniques have evolved out of the software engineering discipline for analyzing soft-
ware. In this section, the work of research groups from the University of Wisconsin and the
University of California (Davis) in applying software analysis techniques for security assessment
is summarized. Other pioneering work in this area was performed by researchers at the COAST
Laboratory at Purdue University [21].

A University of Wisconsin group using a tool called Fuzz subjected Unix utilities to random
streams of input data. Miller et al. found that “.. the failure rate of utilities on the commercial
versions of UNIX ... tested (from Sun, IBM, SGI, DEC, and NeXT) ranged from 15-43%” [12, 13].
Most of these utilities failed because of errors in coding. The class of errors that caused the most
failures were related to misuse of pointers and array subscripts. For example, incrementing the
pointer past the end of an array was a common coding error. Using dangerous input functions,
such as the gets call, turned out to be the second most common cause of errors that crashed
system utilities. Besides being a cause of reliability errors, the gets call is notorious from the
Morris Internet Worm incident [21]. The reason this call and other related input functions are
dangerous is that they do not limit or check the length of the input they read. In the case of the
Internet worm, supplying the gets call with over 512 bytes of data overruns the stack frame, thus
enabling arbitrary input data to be executed [8]. This example emphasizes the dangers of using
input functions and system calls that do not check or limit input lengths.

The work by Miller et al. managed to crash several system utilities, including £tp and telnet,
by testing the bounds on input functions. In Practical Uniz & Internet Security, Garfinkel and
Spafford point out the frightening potential for security violations in standard software distributed
by vendors, relative to the random black-box testing results from the Miller et al. study (pg 705,[8]):

What is somewhat frightening about the study is that the tests employed by Miller’s
group are among the least comprehensive known to testers — random, black-box test-
ing. Different patterns of input could possibly cause more programs to fail. Inputs
made under different environmental circumstances could also lead to abnormal behav-
jor. Other testing methods could expose these problems where random testing, by its
nature, would not.

Research by Bishop and Dilger at U.C. Davis has studied a class of race condition flaws called
time-of-check-to-time-of-use (TOCTTOU) flaws [1]. Their research attempted to identify a coding
error in which a program checks for a particular characteristic of an object, then takes some action
while assuming that characteristic still holds—when in fact it does not. This type of problem is
particularly critical in SUID-root programs that attempt to verify that a user has access permissions
to one file, then modify it. A cracker can exploit this flaw by creating a link from the file that
has been granted access, e.g. /usr/spool/mail/john, to another file that requires higher privilege
for access, e.g. /etc/passwd. If the cracker is clever enough, he or she can create the link after
access has been granted and before the program accesses the file. This sleight of hand can fool the
program into modifying a file it would not otherwise have permitted.

Bishop and Dilger’s research has focused on a source-code-based technique for identifying pat-
terns of code which could have this programming condition flaw. One of the limitations reported in
their paper [1) for this technique is that the static analysis cannot determine if the environmental

conditions necessary for this class of TOCTTOU binding flaws exist. Their conclusion is that a dy-
namic analyzer will be able to test the environment during execution and warn when an exploitable
TOCTTOU binding flaw occurs.

Another U.C. Davis group is using property-based assertions and software testing techniques
to verify security properties of software [6]. Similar to the work presented in this report, these
different research projects are employing techniques developed in other areas of software assurance
(reliability, safety, testing) to the difficult problems in assuring security in computer systems.

2.2 Related work at Reliable Software Technologies

Reliable Software Technologies is also investigating dynamic security analysis of Windows-NT-based
COTS applications for defensive Information Warfare(IW). This work is co-sponsored by DARPA
and Air Force Research Laboratory under contract F30602-97-C-0117. The purpose of our effort
is to investigate a methodology based on dynamic black-box software analysis capable of revealing
existing bugs and new vulnerabilities in COTS software products. We are developing a prototype
software tool that automates the discovery of existing weaknesses in executable components in the
Microsoft Windows-NT environment. This technology will be delivered in the form of a black-box
software analysis tool capable of automatic dynamic software analysis.

Research on the IW project includes a new study aimed at analyzing the robustness of software
running on Windows NT systems. The goal of the study is to identify robustness gaps in the
application software and operating system software that potentially could be exploited for violations
of security. Contributions of the work include a taxonomy of failure conditions and experimental
results from robustness testing of software running on the NT platform. The ongoing work under
this project is developing a technique for intercepting calls between client applications and utility
components in a Dynamic Linked Libraries (DLL).

Another related security project at RST is the NIST Component-based Software Advanced
Technology Program (ATP) project which addresses security certification for component-based
software used in Internet-based electronic commerce. Securing components used in electronic com-
merce is one of the most important hurdles that must be overcome if electronic commerce is ever to
become a driving force in the consumer market and the software distribution industry. The project
aims to develop a certification process for testing software components for security. We are devel-
oping a process and a set of core testing technologies to certify security of software components.
The manifestation of our product is a stamp of approval in the form of a digital signature.

The key innovations of this project involve developing a Component Security Certification (CSC)
pipeline through which a software component will be tested. If the component meets minimal
thresholds for security assurance, then the component will be signed using the certifying lab’s
digital signature. The CSC pipeline involves a combination of white-box and black-box testing
processes to providing security assurance. The success of this effort will accelerate the development
and deployment of software components used in Internet commerce.

3 Fault Injection Terminology

Throughout the course of our project, we found it necessary to develop some terminology for
discussing security vulnerabilities in relation to fault injection. In particular, it became apparent

that we needed to tease apart simulated vulnerabilities exploited by FIST and real vulnerabilities
exploited through program inputs. We use the following terms throughout the rest of this report.

Adapted Vulnerability Analysis (AVA) AVA is performed by exercising a target program
with a set of test cases. For each test case, the program is executed N times, where N
is the number of locations where a bad state is to be injected. For each of the N executions,
a different location [is perturbed, and if a violation occurs as a result, a counter for the given
location ¢[l] is incremented. The vulnerability score for each location is a ratio of c[l] to the
number of times location | was perturbed. AVA is implemented in FIST.

artificial vulnerability Artificial vulnerabilities are weaknesses in the code that lead to security
problems during FIST analysis. We use the overly-strong term artificial to emphasize that
a vulnerability discovered through fault injection may not in fact have a direct effect on
program security. A location is a potential artificial vulnerability if it matches heuristics
used to identify potential problems (such as being a stack buffer). A location is an ezercised
artificial vulnerability if perturbation at the given location yields a violation during a run of
FIST. A location is a non-ezercised artificial vulnerability if perturbation at the given location
can be shown to cause the violation without actual use of the tool.

call graph A directed graph that contains a node for each function/method in the target program
and an edge from node A to node B if and only if function A calls function B.

control flow graph A directed graph that contains a node for each statement in the target pro-
gram and an edge from node A to node B if and only if it is possible for statement B to be
executed immediately after statement A.

data dependence (flow) graph A directed graph that contains a node for each variable at each
statement in the target program; there is an edge from node A to node B in the graph if and
only if node A refers to a definition of a variable, node B refers to a use of the same variable,
and there is a definition free path with respect to that variable from A to B in the data flow
graph. -

fault injection The concept of forcibly changing the program data state at a given location in a
program during execution. Fault injection may be used to simulate hardware failure, software
faults, bad data values introduced through Commercial-Off-the-Shelf (COTS) function calls
or human interfaces, or even random memory corruption. See [23].

function input Values that are passed into a function after it is called during program execution.
A function input can be a value passed in via the function argument list or via a global
variable.

injected data state The entire program data state at a given location after a perturbation has
been applied to a data state value.

location A location refers to a point in a source file where either a perturbation function or an
assertion may be specified.

perturbation Perturbations are used to perform fault injection within FIST. A perturbation is a
single data state modification introduced during a single execution of a program.

program input A value provided to an executing program from an external source, such as the
user, another software component, or a hardware component.

real vulnerability If there exists at least one set of program input values that exploits an arti-
ficial vulnerability at a given location, then the location is called a real vulnerability. Real
vulnerabilities are the root cause of all security problems. Exploit scripts attack real vulner-
abilities.

statement Statements are sections of code that are executed in sequence; statements are executed
for their effect, and do not have values; statements fall into one of the following categories:
labeled statements, expression statements, compound statements (or blocks), decision state-
ments, iteration statements, declaration statements, or jump statements.

violation A condition that indicates a violation of the application security policy if the condition
is true. Assertions placed in the code can identify violations at runtime.

vulnerability score The vulnerability score for each location is a ratio of security problems en-

countered at a location to the number of times the location was perturbed when performing
AVA.

3.1 An Introduction to Stack Smashing

One of the most useful perturbation functions developed during the project and incorporated into
the prototype is a perturbation that simulates a buffer overflow attack. A brief background on
buffer overflow and stack smashing helps to set the stage.

Most computer programs need to create sections of memory in which to store information. The
C programming language allows programmers to create storage in two different sections of memory:
the stack and the heap. When contiguous chunks of the same data type are allocated, this is known
as a buffer. C programmers must take care when writing to these buffers that they do not try
to store more data in the buffer than the defined length of the buffer. Occasionally, programming
mistakes will allow programs to read and write past the bounds of a buffer. When a program writes
past the bounds of a buffer, this is called a buffer overflow. The C language allows programs to
write past the bounds of buffers. There is no run-time check for writing past the bounds of a buffer.

A special case of buffer overflows, called stack smashing, occurs when the buffer being overflowed
is allocated on the program’s stack. The stack in a C program is an internal data structure that
maintains records for each function that has been called while the program is running, starting
with main. Stack smashing attacks target a specific programming fault: careless use of data buffers
allocated on the program’s runtime stack. A creative attacker taking advantage of a buffer overflow
vulnerability in a program can replace a running program with a completely different program. If
the program that was subverted was a process running with a high privilege level, the attacker can
run a program on the target machine with the same high privileges to do the attacker’s work.

3.2 Implementing AVA with FIST

The software vulnerability metric that we have developed is based on observing the impact of
simulated threats on an executing system. Adaptive Vulnerability Analysis (AVA) is a dynamic
software analysis algorithm adapted from the extended propagation analysis (EPA) technique used

in assessing safety-critical software [7, 14, 15, 23]. Threat simulation in AVA is accomplished
through fault injection during dynamic execution of a target program.

We developed AVA as a concrete way to rate the vulnerability of a software system. Because
it is an adaptive measure, the AVA vulnerability measuring technique can be specialized to assess
different kinds of threats. The AVA environment can be tuned to better assess a particular piece of
software based on vulnerabilities that similar pieces of software revealed in the past. For example,
if httpd programs have proven to be particularly open to specific attacks, new versions of httpd
should be tested using such attacks. AVA does not implement a traditional source code-based
static measure (such as cyclomatic complexity, Halstead’s program volume, SLOC, etc. [25]).
Instead, AVA measures how software behaves when it is forced into anomalous situations. The
method by which we analyze how software behaves under malicious threats is closely based on
the extended propagation analysis (EPA) algorithm described below. Our main objective is to
determine whether a piece of software has weaknesses that can be leveraged into security exploits.
Like its EPA ancestor, AVA measures a dynamic characteristic of software.

AVA has been implemented in the Fault Injection Security Tool (FIST). The algorithm is
summarized here, see [22] for further detail.

3.3 Formalizing AVA

Let P denote the program under analysis, z denote a program input value, A denote the set of
all possible inputs to P, Q denote the normal usage probability distribution of A, Q denote the
inverse usage probability distribution, @ denote a special input set, [denote a program location in
P, and PRED denote the violation predicate.

Algorithm 1:

1. For each location ! in P that is appropriate, perform Steps 2-7.
2. Set count to 0.

3. Randomly select an input z or input sequence from Q, Q, or @, and if P halts on
z in a fixed period of time, find the corresponding set of data states created by z
immediately after the execution of [. Call this set Z.

4. Alter the sampled value of variable a found in Z creating Z, and execute the
succeeding code on Z. The manner by which a is altered will be representative of
the threat class from T that is desired.

5. If the output from P satisfies PRED, increment count.
6. Repeat steps 3-5 n times, where n is the number of input test cases.

7. Divide count by n yielding 1/3a¢pq, the vulnerability assessment, for each line [.
This means that 1 — ¢, pg is the security assessment that was observed, given P,

Q,and T.
3.4 Assessing Program Behavior

The first two steps of the algorithm are very basic. AVA is a source-code-based methodology in
which instrumentation is placed between particular statements (called “locations” in the code).

Either an automated system that implements the algorithm (if it is intelligent enough) or the user
must tell the system which locations are relevant for fault-injection. The first step is to localize
where injection is to occur. Next, a counter is initialized to zero, since we wish to observe how
many security intrusions occurred due to the simulated threats that the prototype attempted for a
particular location [.

Unlike most software metrics in use today, the AVA software assessment measure does not look
at software structure. It looks at software behavior. The algorithm selects test cases (i.e., program
inputs) upon which the program will run in Step 3. The inputs can come from different testing
schemes that are more likely to trigger a successful intrusion: rare events (with respect to the
operational profile), known input sequences that are unusual or likely to be threatening, totally
random inputs, or even the operational profile of the system. The fourth step performs the actual
program state corruption or syntactic mutation of the code (i.e., this step is the fault injection
step). Once the fault that is injected by Step 4 is executed during the analysis phase, the program
has been altered in some way. Step 5 then determines if the problem forced during Step 4 causes the
program to produce an output event that satisfies our definition for what constitutes as a security
violation. If so, the counter is incremented by one. Step 5 is a non-trivial step. That is, it requires
definition of a security policy for a program. The definition of a security policy is coded in the form
of an assertion that states the program or its environment should never be in a particular state. In
general, security policies will vary by application.

Steps 3, 4, and 5 are repeated multiple times (Step 6), which provides a statistical estimate of
the frequency that security intrusions occurred from the problems injected in Step 4 with respect
to the inputs employed in Step 3. This estimate is calculated in Step 7.

3.5 A Relative Security Metric

AVA’s measure of information system security is not an absolute metric, such as mean-time-to-
failure. Instead, it is a relative metric that allows a user to compare different versions of the same
system, or to compare different (but similar) systems that have the same purpose.

For the metric we collect, the class of all potential threats is infinite. Clearly, Algorithm 1
cannot simulate all members of the set. Furthermore, for any particular P, it is likely that most
members of T are irrelevant. Hence our implementation has two different means for defining the
members of T that are relevant:

1. Default perturbation functions, and

2. A Perturbation Function Template that will allow the user to define the idiosyncrasies of
specialized threats that are only relevant to P. This Template can be tuned to specific input
signals, source-code-based defect classes, and timing.

Because the class of potential, future threats is unknown, any set of default threat classes may
not adequately reflect how those threats will affect internal program states. Also, the user of the
perturbation function template may not have the foresight to envision certain classes of threats. To
attempt to partially accommodate this weakness in the technique, our prototype has a set of default
perturbation functions that do not necessarily simulate threats, but simulate random corruptions
in the state of the executing program. These random corruptions, when forced into the software,
are analyzed to see whether PRED is ever satisfied.

4 Fault Injection Security Tool (FIST)

The Fault Injection Security Tool (FIST) is a working implementation of AVA described above.
The tool automates white-box dynamic security analysis of software using program inputs, fault
injection, and assertion monitoring of programs written in C and C++. A schematic diagram of
FIST is shown in Figure 1. The fault injection engine provides a developer or analyst the ability
to perturb program states randomly, append or truncate strings, attempt to overflow a bufler,
and perform a number of other numerical fault injection functions. The security policy assertion
component provides a developer or analyst the ability to determine if a security violation particular
to the software application being analyzed has occurred.

Adaptive Vulnerability Analysis

Fault Injection Instrumented
Engine

* buffer overflow P

* data corruption

* string manipulation

* fault composition

/

Program Inputs Security Policy
Assertion

* strings and other variables
* server commands T
* configuration files
* network traffic

Statistical Collection

Relative Security Metrics

Figure 1: Overview of FIST. A program, P, is instrumented with fault injection functions and assertions
which codify security policy (based on the vulnerability knowledge of the program). The program is exercised
using program inputs. The security policy is dynamically evaluated with reference to program and system
states. If a security policy assertion is violated during the dynamic analysis, the specific input and fault
injection function that triggered the violation is identified. Algorithm 1 is used to collect statistics about the
vulnerability of the program to the perturbed states. One output from the analysis is the relative security
metric ¥, PQ-

4.1 Using FIST

FIST is a powerful security analysis tool. A side effect of its power is that it can be easily misused.
In many ways, FIST is a programming environment. The ability to obtain useful results with FIST
relies directly on the ability of the analyst wielding it. To use FIST to its full potential, an analyst
should have extensive knowledge of computer and application security.

Obtaining useful results requires a well-defined security policy for the program being analyzed,
and an accurate coding of this policy in terms of vulnerability conditions (codified as security
assertions). The assertions provide observability into program state during analysis and determine
when something violating policy has occurred.

FIST analysis is only as good as a combination of: the input used to execute the program,
the perturbation functions selected, and the policy assertions placed in the code. If these data are
well-selected, FIST analysis provides a powerful security analysis capability. It is important not
to read too much into the results obtained through FIST analysis, however. FIST can certainly
indicate when security problems are discovered. But if the results indicate perfect security, chances
are the analyst has not exercised the program thoroughly enough.

FIST analysis is applied to a target program that itself can comprise multiple source code
files. There are four steps to analyzing a security-critical program with FIST. The four steps
are: Instrument, Build, Execute, and Results. (Each of these steps is explained in the following
sections.) Before starting with FIST, an analyst needs a copy of the relevant source code and
in-depth knowledge of the security policy the program operates under.

INSTRUMENT ECUTE | RESULTS

BUILD

Figure 2: FIST’s four steps represented as icons.

4.1.1 Instrument

The Instrument step is performed first. During instrumentation, an analyst specifies the way the
target program source code is instrumented during the Build step.

There are two kinds of instrumentation to be interactively placed in the code during this step:
perturbation functions and violation conditions. The FIST Source Code Browser allows users to
specify locations for both kinds of instrumentation within each source file making up a program.

The analyst can specify several different varieties of perturbation, each of which will be indi-
vidually applied during analysis. Violation conditions codify application security and monitor both
internal program states and external system states during runtime analysis. A screen shot of the
Source Code Browser used to place instrumentation is shown in Figure 3. See {18] for details.

Perturbation functions are the FIST mechanisms used to trip up the target program during
analysis. Perturbation functions can be specified to simulate programmer faults, malicious usage,
etc. Picking good perturbation functions is as much art as it is science. For more information see
[23].

Using the Source Code Browser allows an analyst to select:

e locations in the source code to apply perturbation functions
e individual perturbation functions and corresponding parameter values to apply at each loca-

tion

10

TR ReSource Browser

ile Search QOptions |nstrumentation Analysis Mode Windows About

- Source File: webfgr.c Instr File: webfgr.ins Analysis: Security ‘
v+ T Strcpu(toestr, © s _ ANy
T3: : ’ : '
.+ 74: ocl = getenv ("QUERY_STRING");
T5¢
+ o+ 6 strepu(cl,ocl)s
T :
+ 0+ 78: (e 11 (tel{0D)) {
+ 3 © send_doc(0)s
+ 80: exit(1);
81:
82:
+ o+ 83: for (x=0;c1[0] 1= "\0";x++) {
+ + 84: R=X; . ’
+ O+ 85: getuord(entries[x].val,cl, ’&’);
-~ A RA' . - -\l‘-mtnmﬁoﬂ.{m{n}nﬁfxlw.ﬂ“- '

s Perturbation Function Edit Vindow

Line: 76

Avallable Symbols L - : Instr Functions:
<R>ocl - N Add Perturd

Figure 3: FIST Source Code Browser with Perturbation Function Edit Window open

Violation conditions check internal program states and system states during execution in
order to detect if a violation of the security policy has occurred. These violations are specified in
the Source Code Browser using either a standard C/C++ expression syntax or a predicate logic
based assertion language supported by FIST. Violation conditions codify the security policy of the
program under analysis and can monitor both internal program states and external system states.

Once all perturbation locations and violation conditions have been specified with the Source
Code Browser, the analyst saves the instrumentation configuration and builds a copy of the target
to analyze.

4.1.2 Build

The FIST Source Code Instrumenter, securetool, operates as a command line program that can be
activated within a make file, making it easy to incorporate within any active development process.

11

Simply inserting the securetool command on the compiler line and linker line serves to instrument
source code with the perturbation functions and internal violations specified during the Instrument
step.

The FIST Source Code Instrumenter acts as a pre-processor to the compiler that intercepts the
source code, instruments it according to the specifications made during the Instrument step, and
passes the instrumented source code on to be compiled. The compiled program is instrumented in
such a way that the FIST Execution Manager can gather AVA results during execution.

4.1.3 Execute

Finally the program must be executed. Once a program has been compiled with the appropriate
FIST instrumentation, security analysis can be automated with the FIST Execution Manager,
securexec. The Execution Manager component runs tests and collects the security analysis data
in a results file.

4.1.4 Results

While the FIST Execution Manager runs security analysis on an instrumented executable target
program, a security results file is generated. The FIST Results Browser provides an intuitive way
to traverse and review the results. Results are displayed in a hierarchical manner and include a
link to the source code (including particular lines where violations have occurred). Figure 4 shows
a screen capture of the Results Browser GUI [18]. The FIST Security Report Generator can create
a text representation of the results as well.

5 Experimental Analysis with FIST

FIST has been experimentally applied in the laboratory to a number of different security-critical
programs. Much of the FIST work has been presented at peer-reviewed conferences and other
academic presentations. The following publications and technical reports discuss FIST results in
greater detail: [9, 22, 23]. Also see Appendix A which lists all project documents.

To give you a flavor of FIST results, we present results from analyzing five different network
services. Network daemons are interesting from a security standpoint because they provide services
to untrusted users. Most network daemons allow connections from anywhere on the Internet,
opening them up to attack from malicious users anywhere. Network daemons sometimes run with
super-user, or root, privilege levels in order to bind to sockets on reserved ports, or to navigate
the entire file system without being denied access. Successfully exploiting a weakness in a daemon
running with high privileges could allow the attacker complete access to the server. Therefore, it is
imperative that network daemons be free from security-related flaws that could permit untrusted
users access to high privilege accounts on the server.

The programs examined with FIST were NCSA httpd version 1.5.2.a, the Washington Univer-
sity wu-ftpd version 2.4, kfingerd version 0.07, the Samba daemon version 1.9.17p3, and pop3d
version 1.005h. The source code for these programs is publicly available on the Internet. Samba,
httpd, and wu-ftpd are popular programs and can be found running on many sites on the Internet.
The analysis of those programs was performed on a Sparc machine running SunOS 4.1.3.U. The
other programs, pop3d and kfingerd, are Linux programs found in public repositories for Linux

12

| Eile Browse Qptions

Brouse Level (Hin) Security

ftpd,.scr *
access,c
acl .c
authenticate.c
cornversions.c
extensions.c
ftpd.c
glob.c
hostacc.c
logutmp.c
private.c

H . realpath.c

{ realpath

- Line 58

Line 118

*
-

3

* & % ¥ X

P OO R RRPR R ORRRE MO

*

authuser,c =~ - S
fnmatch,c T |
“streasestr,c T L oo

i Violations En.coLintered
realpath.c: Line 127.

Violations Encountered

i _vViblaticn

EXTERNéﬂéusBufferDvér

Figure 4: FIST Results Browser with Violations Encountered Window open

source code on the Internet. The analysis of those programs was performed on a Linux 2.0.0 kernel.
Three of these programs were selected for analysis because of known vulnerabilities in previous
versions of the same or similar software [3, 4, 5. kfingerd was the only daemon analyzed that had
not previously been found vulnerable.

The programs were instrumented with both simple fault injection functions as well as the buffer
overflow functions where applicable.

A summary of results from the analysis is shown in Table 1. The table shows the total number
of instrumented locations together with the number of simple perturbations and buffer overflow
perturbations that resulted in security violations. The last column shows the percentage of the
functions in the source code that were executed as a result of the test cases employed. Higher
coverage results may result in more potential security hazards flushed out through the analysis.
The results should not be interpreted to mean that the locations identified in the analysis are
necessarily exploitable, only that they require closer examination from the software’s developers to

13

Program Instrumented Successful Successful Function
Locations Simple Perturbations | Buffer Overflows | Coverage
Samba v1.9.17p3 1264 12 15 45.5%
NCSA httpd v1.5.2a 463 27 3 40.14%
wu-ftpd v2.4 476 11 3 58.62%
pop3d v1.005h 73 2 1 63.64%
kfingerd v0.07 146 12 5 38.1%

Table 1: Results from FIST analysis of network daemons.

determine if they can be exploited from input and whether fault-tolerant mechanisms should be
employed.

Case studies of two of the analyzed network services are summarized. See [9] for more detail.
The case studies describe the fault injection techniques applied and the resulting security violations.

5.1 Samba

Samba is a server message block (SMB) daemon for Unix. It allows a Unix file system and printers
attached to Unix machines to be accessed by a machine running a Microsoft Windows operating
system. Motivating analysis of this daemon was a vulnerability made public in a previous version
of Samba. The test data used consisted of commands to navigate the shared Unix file system and
retrieve a file. We instrumented 1264 locations in the code. Simple perturbations caused security
violations at 12 locations, while the more complex buffer overflow perturbations resulted in 15
security violations.

In one of the test cases, perturbing a Boolean value in the daemon code allowed the client
access to the file system with an invalid password. This finding means that the logic at that
location in the daemon code had better be correct or else a security hazard may result. The tool
also detected a buffer overflow violation. However, upon futher examination of the buffer overflow,
it was determined that no user input could exploit this condition.

5.2 pop3d

The test case run against the Post Office Protocol 3 daemon for buffer overflow analysis consisted
of commands to authenticate a user, open their mailbox, list the contents, retrieve a message, and
quit. When testing using simple perturbations, the test case attempted to open a user’s mailbox
when supplying an invalid password.

Only one buffer overflow and two simple perturbations were detected out of the 73 locations
we instrumented. A strcpy performed without checking the destination buffer size was the culprit
in this case. The buffer being used as the source argument to strcpy was populated by the
gethostname () function. This means that the hostname of the computer this program is running
on would have to be extremely long and be the character representation of machine instructions
that would run an exploit script or program in order to exploit this potential vulnerability.

14

6 Are FIST Vulnerabilities Real?

Fault injection is interesting because it places directed experimental stress on running programs
and observes the results [23]. The faults injected during analysis are simulated faults involving
data state corruption, syntactic mutation, and so on. The question is, to what extent are simulated
problems indicative of real problems in the code?

Whenever FIST finds a perturbed data state that leads to a security violation, this is of some
interest. It is often important to determine the causes of such problematic events and mitigate
the security violations through additional fault-tolerant mechanisms. In addition to this approach,
another relevant question to ask in the face of simulated security problems is: can a dangerous data
state be reached by executing the program without fault injection? The challenge is to determine
whether direct program inputs lead to the same problematic data state discovered through injection.
Sometimes it may not be possible to reach such a state.

The problem statement above can be expanded slightly for clarity. We are interested in deter-
mining any one of the following:

1. program input(s) that lead to the data state (caused by fault injection) that resulted in a
violation,

2. program input(s) that lead to the violation itself,

3. convincing evidence that it is impossible to find program inputs that lead to the violation-
causing data state,

4. convincing evidence that it is impossible to find program inputs that lead directly to the
violation.

If the target data state in item 1 includes all data states that the violation condition depends on,
then item 1 implies item 2. It is meaningful to determine item 1 instead of item 2, for two reasons.
By focusing on the location where the fault injection occurs, we are closer (in the control and data
flow) to the program inputs than we are if we focus on the location where the violation condition
occurs. An emphasis on earlier program states may lead to a significant savings in case the fault
injection occurs much earlier in execution than the violation test itself. A second advantage to
pursuing item 1 instead of item 2 is that the data state target may be more precisely defined than
the violation condition target. This may provide an easier target to work towards, regardless of the
methods employed. For example, the violation condition may test whether a core file is generated
or “/etc/passwd” is accessed. It intuitively seems much easier to find inputs that lead to the
data states that cause these conditions than it is to generate inputs that lead to the violations
themselves.

Probing the validity of items 3 and 4 is extremely useful as well. If we can identify that it is
impossible to get to a given state or condition through manipulation of the program input space,
we can make the assertion that the program cannot be exploited in such a way to cause the injected
data state or violation to occur. In this case, we can ignore the FIST result in question.

Each of these four problems is extremely difficult to solve. In some cases it will be impossible to
find the solution to any of them. Our approach to this undecidable problem is to provide a number
of different tools to assist the user in understanding and coming closer to solving the security
problem.

7 ViIsualizing STatic Analysis (VISTA)

Throughout the course of using FIST in experiments, it became clear that another tool could make
FIST analysis easier and more powerful. We addressed the identified needs by creating a second
tool (unanticipated in the original proposal) to visualize and navigate source code—the VIsualizing
STatic Analysis Tool. VISTA’s primary purpose is to provide a way of viewing and navigating
static analysis properties of a program as culled by the static data flow tool (described below in
Section 7.1). VISTA is useful as a standalone tool, but its power for the current project lies in its
integrated use with FIST.

7.1 Static Data Flow

The Static Data Flow (SDF) Tool computes and provides access to static data flow information
about a target program {20]. The SDF Tool is made up of a two components, the SDF library, and
the dataflow pre-processor.

The main component is the SDF library and API. The library provides access to static data
flow information for a program through a public API which other programs can use. The purpose
of this component is to provide a generic interface to static information about a program, so that
other programs can easily access it. The library is responsible for maintaining Call Graph, Control
Flow Graph, Data Dependence Graph, and Control Dependence Graph information derived from
a given source code target. Users of the SDF library query this information through API calls.
VISTA uses this API to navigate a target’s SDF data.

The other component of the SDF Tool is the dataflow utility. This utility parses C programs
and creates an SDF datafile that can be read in by the SDF library. This utility is used to
automatically generate SDF information. It integrates easily within a build process, in a similar
fashion to FIST’s securetool pre-processor described in Section 4.1.2.

The SDF Tool was created to assist with AVA/FIST security analysis. In particular it helps
with the determining whether inputs exist that actually execute an artificial vulnerability.

FIST analysis determines locations in code that are executed artificial vulnerabilities. To de-
termine whether or not an executed artificial vulnerability is a real vulnerability, one must search
for an input that exploits the vulnerability.

There are three ways that the search for an input can be approached: by randomly generating
inputs, through human intervention, and with intelligent automatic input generation. Randomly
generated inputs are unlikely to create an exploit since the search space is immense; and human
intervention is extremely time consuming and error prone. For this reason we targeted intelligent
automatic input generation as a task for Year Three of our project (see Section 9). In order to have
information about what inputs might exploit a vulnerability, a pathfinder needs to know how
input relates to the particular vulnerability. This includes information about how data is passed
through the program and how control flows through the program. The SDF tool’s goal is to provide
this information.

7.2 VISTA views

VISTA implements several different powerful ways of viewing static analysis data [19]. For inter-
functional data, VISTA provides a call graph (which shows how program functions are connected
to each other), and a Caller/Callee List. The latter can be seen in Figure 5. This list can be used

16

File Now Vzcv

Funchon Usl ool

bwd o getcwg

randomsig i i]}geteuid

read 1}seteuld
| || [s!_mode | retrieve
recelve_data i~4] fstat | jstore
regemp i {]}streat } jupl_check

qregex

y e

Figure 5: VISTA Main Frame and Caller/Callee Frame

to navigate up and down a program’s call tree. For intra-functional data, VISTA provides Control
Flow, Control Dependence, and Data Dependence Graphs. These graphs can be viewed alone, or
super-imposed on top of each other. To assist in tying this information back to the original source
code, functional information (signature, location in file, line number) is provided for each function.
A Source Code View displays the source code scrolled to highlight the selected function. All of
these views are integrated so that selecting information in one view causes the other views to be
automatically updated.

As a standalone tool VISTA can be used to quickly and easily locate particular locations in
a program and to traverse between locations. This is particularly useful when investigating FIST
vulnerabilities such as buffer overflows [16].

VISTA'’s graphical display abilities also help an analyst understand how a program is structured
with reference to the information contained in the SDF libraries.

8 Integrating FIST and VISTA

Together, FIST and VISTA provide both static and dynamic information about a program under
analysis. The way the two toolsets work together can be best understood with an example. In this
section, we discuss the application of VISTA and FIST to carry out a stack smashing analysis.

One of the most pervasive computer security problems involves what is known as stack smashing
[9, 17]. FIST was built with a stack smashing perturbation function that simulates a stack smashing
attack on whatever program is under analysis. As we have discussed, when FIST discovers an
exercised artificial vulnerability, there is no guarantee that a real vulnerability exists. That is,
FIST can simulate a security problem with fault injection, but can the problem ever really happen?

The process of examining exercised artificial vulnerabilities can be performed by hand. This
requires the analyst to scan through the source code manually, following execution and data flow.
With larger programs spread across multiple source files, libraries, and directories, more time is
spent locating source code than actually tracing through the program. VISTA gathers all the static
information about a program and provides a user-interface that provides easy navigation through
program structure.

In addition to this post facto use of VISTA, some vulnerability analysis can be performed prior
to running FIST. Some source code based flaws can be identified statically. This process is tedious

and time consuming. VISTA can assist an analyst by identifying places in the source code to
instrument for dynamic FIST analysis.

When performing stack smashing analysis, VISTA can be usefully applied both before and
after running FIST [16]. Using VISTA before running FIST helps to reduce the number of instru-
mentation points required for a thorough FIST analysis, making analysis more efficient. When
FIST uncovers one or more executed artificial vulnerabilities, VISTA can again be used to assist
in determining if any of these vulnerabilities are real.

8.1 Using VISTA before FIST

A utility program called stackbuf processes source code and reports the names of variables that
are character buffers allocated on the stack (i.e., have local function scope). This includes user
defined data types that are aliases for character buffers, and aggregate user defined data types that
contain a character buffer. Instances of all these types have the potential to be used as a target
for a buffer overflow attack. For each source file processed, stackbuf generates a listing of the
variables it has identified as buffers allocated on the stack. The information recorded includes the
name of the function, the line number on which the function implementation begins, the buffer
data type (always char), and the name of the buffer variable.

Armed with the data from stackbuf processing, the analyst can narrow the search for problem
code. By concentrating on variables flagged by stackbuf an analyst can zero in on the data that
absolutely must not overflow. In order to be certain no potential stack buffer overflow conditions
could arise during execution, the usage of each flagged variable must be examined in the source
code. Dangerous usage consists of using the variable as the target of a dangerous library function
(such as strcpy), or writing into the contents of the buffer with a loop that may have a flawed
invariant. The analyst can use VISTA to determine relevant locations for instrumentation and
further dynamic analysis.

8.1.1 Searching for Buffers

One method for using VISTA is to take all the functions listed by all the stackbuf generated files
and search for them in the source. The main VISTA frame includes a listing of all the functions
in alphabetical order. Opening a Source Code View will cause the source to hop from source file
to source file as different functions are selected. This saves the analyst time while locating all the
flagged variables in the source. The analyst must scan the source code for all uses of the flagged
variable in each method. If at any point the flagged variable is used as an argument to another
function call, the analyst can quickly navigate to the implementation of the function to which
the buffer was passed. Examination of the buffer’s usage can continue in the called function, as
it should, without time being spent in locating the implementation of the function, since VISTA
already knows how to find it.

Another method for quickly identifying the uses of a variable is to take advantage of VISTA’s
graphing capability. VISTA can generate data dependence graphs. These graphs indicate how
data flow through the statements in a function. VISTA uses double green edges to show data
dependency. The first step is to scann the graph to identify nodes that contain a reference to
the stack buffer in question. Any node referencing the stack buffer that has an outgoing edge, is
modifying the stack buffer at that node. Incoming edges to nodes referencing stack buffers get
value from some other variable in the function.

18

Statements that modify stack buffers are good candidates for the FIST buffer overflow instru-
mentation function. Usually just looking at the variables is not enough to determine if a location
modifying a stack buffer is a good candidate for instrumentation. Certain functions that operate
on stack buffers signal good instrumentation locations. Searching for these functions once stack
buffers have been identified is the topic of the next section.

8.1.2 Searching for potentially-vulnerable functions

Programs that use certain library functions are more likely to be susceptible to buffer overflow and
stack smashing attacks than programs that do not. Library functions notorious for being leveraged
in programs vulnerable to stack smashing are mostly found in the C string library. Functions such
as strcpy, strcat, scanf, and sprintf do not check their destination parameter to see if it can
hold the amount of data contained in the source parameters. When these functions have stack
buffers as destination arguments, the potential for stack smashing exists. Already having a list of
stack buffers from stackbuf makes identifying which uses of dangerous library functions operate
on stack buffers easier.

One way to determine if programs are vulnerable to buffer overflows through the use of “bad”
library functions is to scan the source code of the program with a utility like grep for the names of
the library functions. This will find every place in the source code that these functions are used.
However, this will not say anything about how the functions are used, just that they are used.
If your coding policy states that these functions should not be used at all, then this would be a
sufficient test for the use of certain functions; but the functions themselves do not cause the buffer
overflow. The use (or misuse) of the function in the code will determine susceptibility to a buffer
overflow attack, which cannot be inferred by looking at the output from grep.

Using the static data flow analysis utility like VISTA, an analyst can search intelligently for
functions known to contribute to buffer overflow vulnerabilities. Once these locations have been
identified, FIST can be used to inject real buffer overflow attack data into the program at that
point. Using dataflow and VISTA reduces the number of locations in the program source code
that must be instrumented by FIST to perform buffer overflow analysis, saving execution time and
analyst effort.

Each statement identified as potentially hazardous, in that it modifies a stack buffer with a
known problem library function, should be instrumented for analysis with FIST. The results of a
FIST analysis will determine whether a buffer overflow condition exists in the program.

8.2 Using VISTA after FIST

If FIST finds that a location instrumented with a buffer overflow perturbation function violates
security, the data that flow to that location need to be examined. As we made clear elsewhere, just
because FIST was able to overflow the target buffer does not mean that an exploit exists. Fault
injection says nothing about the existence of an exploit. It only says that the program is susceptible
to a buffer overflow attack at the point of instrumentation. The analyst must examine the source
code and data flow of the program to determine if a real exploit is possible. Each FIST-identified
location that violates security must be examined.

FIST and VISTA are not able to determine automatically if an exploit exists for a given vulner-
ability. This is a difficult problem. FIST and VISTA in concert can assist an analyst in determining
the feasibility of an exploit, or the existence of functionality that mitigates the risk of an exploit.

19

The first step is to examine the source code around the vulnerable location for any steps that
might have been taken prior to the vulnerable location that would mitigate the risk of an attack.
Steps would include doing any checks on the length of the source variable before it is copied into
the destination variable, or scanning the source variable for specific characters and removing them.
If these checks do not exist in the source of the current function, then data that enter the function
through parameters could cause the buffer overflow. This can be determined by examining the
Data Dependence Graph. An analyst can check to see if an edge exists from the entry node
to the vulnerable statement node. If so, then all the functions that invoke the current function
containing the vulnerable location need to be examined. This can be performed efficiently with
the Caller/Callee list. If mitigating code does exist, searching the current path can be aborted and
searching a different path can begin.

With the function containing the vulnerable location selected, the Called By list will contain all
functions that use the current function. Each of these functions must be checked for their usage of
the vulnerable function. The same methods and heuristics used to check data flow and control flow
in the function containing the vulnerable location can be used here as well. An analyst can click on
each function in the Called By list in turn to determine if the original function (the one containing
the vulnerability) is being used improperly. The Source Code View navigates to the implementation
of the selected function. Instead of focusing on the vulnerable location, an analyst can focus on the
function that contains the vulnerable location. Originally, analysis focused on the exact location of
the violation and the function that contains the vulnerability. If the vulnerability is not protected
against in the local function, functions that use the function containing the vulnerability must
be examined. When examining functions that use the function containing the vulnerability, it is
possible to treat the call to the function containing the vulnerability as the vulnerable location
itself. This helps when scanning the source code for functionality that could prevent an overflow.
This process is repeated as the analyst navigates into different functions in the Called By list,
eventually reaching the source of the data, either a constant (safe) or user input (unsafe).

Determining a real exploit is difficult, and VISTA does not have enough functionality to provide
the analyst the solution automatically (that is, if it even exists). Using the graphs provided, the
analyst can build up a list of criteria that exploit data must have in order to reach the vulnerable
location on a given path (call chain). Through a process of trial and error, an analyst can then
attack the application with exploit code to determine whether the proposed exploit will crack the
software. Examining the source of functions becomes time consuming, however VISTA manages
the navigation through source code by always navigating to the function of interest with a single
mouse click. The analyst is free to concentrate on what’s important, determining the existence of
exploits, rather than scanning source code for the implementation of functions.

9 Pathfinder

As a final experiment in this project, we modified the FIST prototype to use call chain information
from the SDF tool to attempt to solve the “back to the inputs” problem. This section reports
the results of our preliminary experimentation. It is clear that a much larger effort is required to
address this open research issue.

When applying dynamic fault-injection, an analyst who discovers unacceptable program be-
havior must determine whether this behavior can occur during non-fault-injection executions. The
question boils down to whether program inputs can be used to drive similar behavior to that ob-

20

served during analysis with fault injection. Among the first criteria that must be satisfied during
the search for such inputs are whether both the program location where data were perturbed and
the location where the violation was encountered are reachable. The fact that they are clearly
reachable during a run in which faults are injected is neither here nor there. Inputs through normal
program interfaces may not be able to cause similar behavior. This can be illustrated by the simple
case in which a boolean value is reversed by fault injection directly before a branch statement
conditional upon its value, and a subsequent violation is detected in the otherwise-untaken branch.

An analyst can search for inputs by hand, but this search is both tedious and inefficient. We are
interested in automating the task as much as possible. To this end, a software framework has been
developed with the purpose of automating the task of finding input sets that exercise the different
paths between a program’s entry point and some program location of interest /. An obvious
application of this technique is the generation of inputs that, via different courses of execution,
will execute some location deemed suspect through a fault-injection analysis. Use of the Pathfinder
framework can aid an analyst in discovering test cases that follow all possible routes to the location.

9.1 Identifying Paths

A “Path” P from location Iy to I; that the Pathfinder searches for is defined as a sequence of
contiguous control-flow edges [20] connecting location Iy to location I; of a program. Typically,
lp is the entry point of a program or subprogram. A single path represents a possible course of
execution between the two locations.

To produce test cases, the Pathfinder begins with data from the Static Dataflow Tool (see
Section 7.1) and instruments the source code of the program under analysis so that the execution
traces with respect to the control-flow edges of interest can be easily identified. Secondly the possible
paths that exist from the program’s entry point to the location in question must be identified and
stored for later reference. Finally, for each of these identified paths, program inputs need to be
found that cause the program to execute accordingly. This search-and-destroy step is assisted by
use of the Genetic Algorithm Tool [10]. Upon the discovery of any input satisfying the desired
path, Pathfinder creates data in the FIST input file format so that they may easily be used in a
subsequent fault-injection analysis. The algorithm for enumerating possible paths to a location / is
developed in [2].

Once the set of possible paths has been identified, the remaining task is to find (for each of these
paths) a set of inputs that cause the program to exercise that path of execution. RST’s Genetic
Algorithm Tool has been applied to aid in the solution of this problem. For each path, the GA
is called upon to randomly create a population of inputs based on some user-supplied parameters.
The program under analysis is run using each generated input and a fitness score is calculated
based on comparing the program’s execution under test inputs to the actual desired path.

9.2 Experimentation

We performed three different experiments to get a handle on the effectiveness of this approach for
finding program inputs. Each experiment was run with three different solvers: a normal genetic
algorithm, a differential GA, and a random input generator. For more on the methodology employed
in this preliminary experiment, see [10, 11].

The first experiment was performed on a simple program that accepts ten integer inputs. Each
input controls the outcome of a decision later in the program, and, consequently controls whether

21

or not particular program locations will be reached. For each decision in the program, the TRUE
and FALSE branches were equally likely to be taken. The Random solver and the Differential GA
found 100% of the paths and the Normal GA found 95% of the paths.

The second experiment was very similar to the first experiment, with the difference being that
the program was modified to have a deeper call graph. As a result, both the number of paths and
individual path length were greater than in the first experiment.

Once again, each decision was equally likely to be TRUE as it was to be FALSE. However, since
the number of paths was increased, each individual path was less likely to occur on a given run.
In this case, the Differential GA solver found 86% of the paths, whereas the Normal GA and the
Randoms solvers found 42% and 40% of the paths respectively.

The third experiment was similar to the second, with the difference being that the decisions
were no longer equally likely. Instead of each choice being equally likely, some of the branches were
nine times as likely to be taken than their respective counterparts. This causes some of the paths to
be much rarer than others. This better simulates a less contrived, “real” program. The Differential
GA found 100% of the paths, however the Random solver outperformed the Normal GA 86% to
65%.

These preliminary results demonstrate that using machine-learning techniques is more effective
than simply employing random generation[2]. In addition these experiments suggest that differential
GA can at times perform much better than the normal GA. This may just be an indication of poorly
chosen parameters.

The fitness evaluation scheme utilized in these experiments was overly simple. It is likely that
a more elaborate, more intelligent approach to determining test case fitness will force convergence
on solutions more effectively.

The pathfinder experiments are a simple first step in the back to the inputs problem. They
demonstrate the feasibility of our approach. Even a partial solution to this problem will significantly
enhance the potency of fault injection for security.

10 Conclusion

We have presented an overview of the results of Reliable Software Technologies’ three-year DARPA-
sponsored effort investigating dynamic software security analysis. Two complete toolkits, FIST
and VISTA, were presented in a framework explaining their utility in whitebox security analysis.
Together the two tools provide static and dynamic analysis capabilities that can identify security
vulnerabilities early in the software lifecycle.

Using the methodology presented in this report (and elsewhere, see Appendix A), an analyst
can use FIST and VISTA to perform a thorough security analysis on a piece of security-critical
software written in C or C++. Ours is a novel approach to the security conundrum that emphasizes
early security analysis integrated with system development.

Software fault injection has proven useful in many software domains [23]. This project has
examined the utility of software fault injection for security analysis. Overall results are somewhat
mixed. Though our system can clearly identify vulnerabilities, it is unclear whether the vulnera-
bilities identified are real. That is, we can find problems by injecting faults, but the question of
whether these problems will occur in the wild remains open. We hope to work on this critical issue
in future research.

22

It is worth mentioning that even if artificial vulnerabilities found with FIST do not turn out to
be real, they still have two important features. Firstly they can be used to fortify the target program
against potential attacks, and secondly they can be used to aid in the design of Information Warfare
attacks against the code. In this sense, FIST is a powerful defensive and offensive IW weapon.

FIST and VISTA are powerful tools, and they can help an analysts perform security analysis on
source code before its release. Many of the tedious aspects of source-code-based security analysis
have been captured and automated in FIST and VISTA.

References

[1] M. Bishop and M. Dilger. Checking for race conditions in file accesses. In The USENIX
Association, Computing Systems, pages 131-152, Spring 1996.

[2] B.Sohr and M. Schatz. Pathfinder: Generating test data to fulfill control-flow requirements.
Technical Report RSTR-059-1007, Reliable Software Technologies, Sterling, VA, September
1998.

[3] CERT. CA-97.09: Vulnerability in IMAP and POP, April 1997.
[4] CIAC. F-11: Unix NCSA httpd vulnerability, February 1995.
[5] CIAC. H-110: Samba servers vulnerability, September 1997.

[6] G. Fink and M. Bishop. Property-based testing: A new approach to testing for assurance.
ACM SIGSOFT Software Engineering Notes, 22(4), July 1997.

[7] J. Voas, F. Cuarron, G. McGraw, K. MiLLER, AND M. Friepman. Predicting How Badly ‘Good’
Software can Behave. IEEE Software, 14(4):73-83, July 1997.

[8] S. Garfinkel and G. Spafford. Practical Uniz & Internet Security. O'Reilly & Associates, Inc.,
2nd edition, 1996.

[9] AK. Ghosh, T. O’Connor, and G. McGraw. An automated approach for identifying potential
vulnerabilities in software. In Proceedings of the 1998 IEEE Symposium on Security and
Privacy, pages 104-114, Oakland, CA, May 3-6 1998.

[10] G. McGraw, C. Michael, and M. Schatz. Generating software test data by evolution. Technical
Report RSTR-018-97-01, Reliable Software Technologies, Sterling, VA, December 1997.

[11] C. Michael, G. McGraw, M. Schatz, and C. Walton. Genetic algorithms for test data gen-
eration. In Proceedings of the Twelfth IEEE International Automated Software Engineering
Conference (ASE 97), pages 307-108, Tahoe, NV, November 1997.

[12] B.P. Miller, L. Fredrikson, and B. So. An empirical study of the reliability of UNIX utilities.
Communications of the ACM, 33(12):32-44, December 1990.

[13] B.P. Miller, D. Koski, C.P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl. Fuzz
revisted: A re-examination of the reliability of UNIX utilities and services. Technical report,
University of Wisconsin, Computer Sciences Dept, November 1995.

23

[14] J. Voas anp K. MILLER. Dynanic testability analysis for assessing fault tolerance. High Integrity
Systems Journal, 1(2):171-178, 1994.

[15] J. Voas anp K. MiLLer. Predicting software’s minimum-time-to-hazard and mean-time-to-
hazard for rare input events. In Proc. of the Int’l. Symp. on Software Reliability Eng., pages
229-238, Toulouse, France, October 1995.

[16] T.O’Connor. A methodology for determining buffer overflow and stack smashing vulnerability.
Technical Report RSTR-041-1007, Reliable Software Technologies, Sterling, VA, July 1998.

[17] Aleph One. Smashing the stack for fun and profit. Online. Phrack Online. Volume 7, Issue 49,
File 14 of 16. Available: www.phrack.com/Archive/, November 9 1996.

(18] Reliable Softv./are Technologies, 21515 Ridgetop Circle, Suite 250, Sterling, VA. WhiteBoz
FIST User’s Manual, September 1997.

[19] Reliable Software Technologies, 21515 Ridgetop Circle, Suite 250, Sterling, VA. VISTA User
Manual, August 1998.

[20] M. Schatz. What is a program dependence graph. Technical Report RSTR-034-1007, Reliable
Software Technologies, Sterling, VA, December 1997.

[21] E.H. Spafford. The Internet worm program: An analysis. Computer Communications Review,
19(1):17-57, January 1989.

[22] J. Voas, A. Ghosh, G. McGraw, F. Charron, and K. Miller. Defining an adaptive software
security metric from a dynamic software failure tolerance measure. In Proceedings of the 11th
Annual Conference on Computer Assurance, pages 250-263, June 1996.

[23] J.M. Voas and G. McGraw. Software Fault Injection: Inoculating Programs Against Errors.
John Wiley and Sons, New York, 1998.

[24] B. Werner, editor. Eleventh Annual Computer Security Applications Conference (ACSAC’95),
Los Alamitos, CA, December 1995. IEEE Computer Society Press.

[25] H. Zuse. Software Complezity: Measures and Methods. DeGruyter, Berlin, 1990.

11 Appendix A: Document repository index

The following is a complete index of all documents related to the FIST/VISTA project. The
repository is available in electronic form from contract administrators. The repository is set up as
a set of subdirectories containing categories of documents. Each major heading below corresponds
to a directory in the repository.

e experiments Contains documents written during experimentation.

— exp-ideas.txt Lists a number of known security exploits that FIST might want to be
able to find

— ftpd Contains documents about the FTP daemon

24

— wuftpd.html Analysis of the Buffer Overflow in WU-FTPD detected by FIST
report.txt Discussion of the wu-ftpd experiment

smash.txt Smashing The Stack For Fun and Profit (not written by RST)
httpd Contains documents about the HT'TP daemon

* security-analysis.html An internal tech report written describing the results of
analysis on httpd

* httpdcrash.txt Rough sketch of the analysis process for httpd along with some
preliminary results analysis

e conference papers Contains conference papers that were written during this project

— A. Ghosh and T. O’Connor. “Analyzing Programs for Vulnerability to Buffer Overrun
Attacks,” To appear in Proceedings of the 21st National Information Systems Security
Conference, October 5-8, 1998, Crystal City, VA.

— A. Ghosh, T. O’Connor, G. McGraw.” An Automated Approach for Identifying Poten-
tial Vulnerabilities in Software.” Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA. May 3-6, 1998, pp. 104-114.

-~ J. Voas, G. McGraw, A. Ghosh, F. Charron, K. Miller. “Defining an Adaptive Software
Security Metric from a Dynamic Software Failure-tolerance Measure,” Proc. of the 11th
Annual Conference on Computer Assurance (COMPASS’96)

e presentations Contains the slides for presentations that were given during this contract.

afrl Presentation given to AFRL in June of 1998 (end of Year 3).
darpa Presentation given to DARPA in 1998.
— ieee Presentation given a IEEE Security and Privacy 1998.

— nissc Presentation given at NISSC in 1996.
— Rome Presentation given at Rome Labs
— tahoe Presentation given at DARPA Component Wrappers Workshop, August 1997.

— vista-development Presentation given internally at RST talking about things learned
during the development of VISTA.

— yearl Presentation given at RST at the end of year 1 of this contract.
— year2 Presentation given at RST at the end of year 2 of this contract.

e prototypes Contains documents written during the building of the prototypes that were
created during this project

— FIST Contains documents that were generated involving the FIST prototype
* demo An online demo of the FIST tool
* development Contains docs about the development of FIST

- ARPA-tasks.ps A document listing describing tasks that were to be done for
FIST

25

. assertmon Contains documents about the AssertMon component that was writ-
ten for FIST
1stdraft A first draft of a requirements doc for AssertMon
ondraft A second draft of a requirements doc for AssertMon
specl.ps Specification document for AssertMon
design.ps A preliminary design document for AssertMon
d2.ps A design document for AssertMon
input.ps A design doc for the Input Handler
output.ps A design doc for the Output Handler
asserthand.ps A design doc for the Assertion Handler
mainrout.ps A design doc for the MainRoutine
. buffer-overflow Contains documents about how to test for buffer overflows
1. boverflow.htm! Proposal on how FIST could support buffer overflow analysis
2. rtil_bover.ps Documentation on the buffer overflow perterbation functions
in the RTIL.
. cbrowse Contains documents about how the CBrowse component was modified
for FIST
1. CBrowseTestPlan.txt Describes how to test CBrowse
9. to_be.done Describes tasks that need to be done for CBrowse to support
FIST
. dev9T7-tasks.ps Lists tasks for 1997
. dev_tasks.txt Asks questions that led to what was developed
. execman Contains documents about how the execman component that was
modified for FIST
1. execman.ps A document listing some of the changes required of execman to
support security analysis
2. exec_proc_ctrl.ps Describes how Execman will deal with process control for
daemons
3. ftpd.ps A document describing what is required to test network daemons
4. ftpd.fig A figure to go along with the above document
5. input_points.txt Ideas on how input can be specified to a program being
tested
6. redesign.ps A document describing the redesign of execman
. grammar To assist in testing httpd a grammar generator was created. Docs
about this are in this directory.
1. ideas.txt Info about the grammar
2. user.html User manual for the grammar generator
. httpd.ps A high level internal doc describing changes needed to support analysis
of httpd
. httpdmore.ps An internal doc listing changes that were required to be made
to FIST to support analysis of httpd

© 0 NGOk W

26

- rtil Contains documents about how the Run-Time Instrumentation Library had
to be modified for FIST.

1. instr_lib_mods.ps Describes some of the changes that needed to be made to
RTIL

2. pert_funcs.txt Describes perterbation functions
- schedule.ps A schedule created for adding socket control to FIST
- socketman.ps An internal document describing work done to handle sockets
- TestPlan.txt A test plan for FIST
- DY3-Vision.html The vision for FIST for DY3
x install.txt Instructions on how to install FIST
* technology Contains docs about some of the technology learned during FIST
- HowTTI.txt Describes how Time To Intrusion is calculated
- threat-class.txt Lists some threat classes
* user-manual Contains the FIST user’s manual

— misc Contains documents that were generated during development that don’t fit under
any one prototype

*x source-merge Contains documents that describe what was done to merge all of
the work that has been on different prototypes into one branch in the source code
revision management system.

— PathFinder contains documents that were generated during development of the path
finder prototype.

* requirements the requirements for the pathfinder.
* design the design for the pathfinder.

— SDF Contains documents that were generated involving the SDF sub-project

* design Contains documents describing the design of the SDF prototype

- require.html Contains the requirements that the SDF library is supposed to
fulfill

- data-structure.html Describes the design of the data structures that store the
SDF info.

- analyzer.html Describes the design of the analyzer that takes a parse tree and
converts it into the SDF data structures.

- sdf-file-format.txt Describes the file format that is used to store SDF files
* api Contains API documentation for the SDF library
— VISTA Contains documents that were generated involving the VISTA sub-project

* api Contains the API documentation for VISTA

* demo An online demo of the VISTA tool

* design Contains design documents for VISTA
- graph Document describing the design of the graph package used by VISTA
- vista Document describing the design of VISTA

27

+* misc Contains miscellaneous VISTA documents

. hacks.html A document describing different implementation details that might
not be obvious at first glance what they do

. future.html A list of features that we would like to see in VISTA if we had the
time

* user-manual The VISTA user manual
e status Contains the status reports written for this project

— nov95.ps Status for November 1995
— dec95.ps Status for December 1995
— jan96.ps Status for January 1996

— feb96.ps Status for February 1996
— mar96.ps Status for March 1996

— apr96.ps Status for April 1996

— may96.ps Status for May 1996

— jun96.ps Status for June 1996

— jul96.ps Status for July 1996

— aug96.ps Status for August 1996

— sep96.ps Status for September 1996
— oct96.ps Status for October 1996

— nov96.ps Status for November 1996
— dec96.ps Status for December 1996
— jan97.ps Status for January 1997

— feb97.ps Status for February 1997
— mar97.ps Status for March 1997

— apr97.ps Status for April 1997

— may97.ps Status for May 1997

— jun97.ps Status for June 1997

— jul97.ps Status for July 1997

— aug97.ps Status for August 1997

— sep97.ps Status for September 1997
— oct97.ps Status for October 1997

— nov97.ps Status for November 1997
— dec97.ps Status for December 1997
— jan98.ps Status for January 1998

— feb98.ps Status for February 1998

28

mar98.ps Status for March 1998
apr98.ps Status for April 1998
may98.ps Status for May 1998
jun98.ps Status for June 1998
— jul98.ps Status for July 1998

!

[

o tech-reports Contains technical reports that were written

— CDRL_4.1.1.ps Contract Data Requirements List 4.1.1

— CDRL._4.1.2.ps Contract Data Requirements List 4.1.2

— CDRL_4.1.3.ps Contract Data Requirements List 4.1.3 and 4.1.4

— CDRL_4.1.5.ps Contract Data Requirements List 4.1.5

— CDRL_4.1.5.ps Contract Data Requirements List 4.1.6

— reportl.ps Six month technical report

— wuftpd.ps Internal report on WU-FTPD security analysis experiment

- Methodology.html RSTR-041-1007 which discusses how to use the FIST and VISTA
prototypes to search for buffer overflow vulnerabilities in source code

— Pathfiner.html RSTR-059-1007 which describes the Pathfinder experimentation that
was performed.

— what-is-pdg.html RSTR-034-1007 which describes the concept of program dependence
graphs

— final.ps Final Report

29

DISTRIBUTION LIST

addresses nunber
of copies

JOHN Ca. FAUST 10
AFRL/IFGB

525 BROOKS RD

ROME NY 13441-4505

RELIABLE SOFTWARE TECHNOLGIES CORP 5
21351 RIDGETOP CIRCLE

SUITE 400

DULLES VA 2014646

AFRLJIFOIL: : 1
TECHNICAL LIBRARY.

26 ELECTRONIC: PKY!

ROME NY 13441<4514

ATTENTION: DTIC-0CC 1
DEFENSE TECHNICAL INFO UENTER

B725 JOHN J. KINGMAN RODAD, STE 0944

FT. BELVOIR, VA 22060-52138

DEFENSE ADVANCED RESEARCH LR
PROJECTS ABENLY! '

37071 NORTH FAIRFAX DRIVE

ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER 1
IIT RESEARCH INSTITUTE

201 MILL ST.

ROME, NY 13440

AFIT ACADEMIC LIBRARY 1
AFIT/LDOR, 2950 P.STREET

AREA. Br BLDG 642

WRIGHT-PATTERSON AFB OH 45433-7755

AFRLJHESC-TDC 1.
2698 6 STREET, BLDG 19D
WRIGHT-PATTERSON AFB OH' 45433-7604

DL-1

ATTN: SMDC IN PL
US ARMY SPACE & MISSILE DEF CMD
HUNTSVILLE AL 35307-3380D1

COMMANDER, CODE 4TLDOOD
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-5100

CDR, US ARMY AVIATION & MISSILE CHD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM—-RD-0B-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY

MS P364

LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM B7545.

ATTN: D'BORAH HART
AVIATION BRANCH SVC 122.10
FOB10A, RM 931

800 INDEPENDENCE AVE, SW
WASHINGTON DC 20591

AFIWC/NSY:
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KARDLA M. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE

PITTSBURGH PA 15213

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VSOSA(LIBRARY-BLDG 1103)

5 WRIGHT DRIVE

HANSCOM AFB MA 01731-3004

ATTN: EILEEN. LADUKE/DASD
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA. 01730

bL-2

QUSD(P)/DTSA/DUTD

ATTN: PATRICK G. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUITE 300

ARLINGTON VA 22202

bL-3

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for H,
Information Dominance and its transition to aerospace systems to

I

meet Air Force needs.

